
High Performance Computing for

Information Retrieval
Giuseppe Totaro, PhD

Scientific Applications Software Engineer (Level 2)

Computer Science for Data Intensive Applications (398M)

j p l . n a s a . g o v

Section

• 3980 - INSTRUMENT SOFTWARE AND

SCIENCE DATA SYSTEMS

Nov 17, 2017 High Performance Computing for Information Retrieval 2

j p l . n a s a . g o v

Information Retrieval

• IR systems by the scale

– web search

– personal information retrieval

– domain-specific search

• Challenging blend of science and engineering

• First major concept in IR: the inverted index

Nov 17, 2017 High Performance Computing for Information Retrieval 3

“Information retrieval (IR) is finding material (usually documents)

of an unstructured nature (usually text) that satisfies an

information need from within large collections (usually stored

on computers).”

[Manning, Raghavan and Schutze (2008)]

j p l . n a s a . g o v

Doc 1 new home sales top forecasts

Doc 2 home sales rise in july

Doc 3 increase in home sales in july

Doc 4 july new home sales rise

Doc 1 New home sales top forecasts

Doc 2 HOME SALES RISE IN JULY

Doc 3 Increase in home sales in July

Doc 4 July new home sales rise

Inverted Index

1. Collect the documents to be indexed

2. Tokenize the text

3. Produce a list of normalized tokens

4. Index the documents

Nov 17, 2017 High Performance Computing for Information Retrieval 4

Doc 1 new home sales top forecasts

Doc 2 home sales rise in july

Doc 3 increase in home sales in july

Doc 4 july new home sales rise

term doc. freq. documents

forecasts 1 1:1, 4:6

home 4 1:5, 2:1, 3:13, 4:10

in 2 2:17, 3:10-24

increase 1 3:1

july 3 2:20, 3:27, 4:1

new 2 1:1, 2:6

rise 2 2:12, 4:21

sales 4 1:10, 2:6, 3:18, 4:15

top 1 1:16

In
v
e
rt

e
d

 i
n

d
e
x

DICTIONARY POSTINGS

j p l . n a s a . g o v

Automatic Classification and Interpretation of Polar Datasets

Scientific Case Study

Nov 17, 2017 High Performance Computing for Information Retrieval 5

Thwaites Glacier bed topography derived from airborne radar data. [Joughin, Smith and

Medley (2014)]

j p l . n a s a . g o v

Automatic Classification and Interpretation of Polar Datasets

Scientific Case Study

Nov 17, 2017 High Performance Computing for Information Retrieval 6

NSF ADC, https://arcticdata.io

NASA AMD, https://gcmd.gsfc.nasa.gov

NSIDC ADE, http://arctic-data-explorer.labs.nsidc.org

[Burgess and Mattmann (2014)]

j p l . n a s a . g o v

Automatic Classification and Interpretation of Polar Datasets

Scientific Case Study

• TREC Dynamic Domain:

Polar Science

– Data Triage

– Web Crawl

– Data Preparation

– Dataset Characteristics

– Querying the Data

Nov 17, 2017 High Performance Computing for Information Retrieval 7

Figure 3. More precise extracted content using Apache Tika and Apache Nutch for the

ACADIS Polar data repository. Our approach was able to extract 6% more of the data by

correctly identifying many previously “unknown” MIME types in ACADIS.

http://trec-dd.org/2015/2015.html

Dataset of 50,000+ crawled web pages,

scientific data (HDF, NetCDF files, Grib files),

zip files, PDFs, images and science code

related to the polar sciences and available

publicly from the NSF ADC, NASA AMD, and

NSIDC ADE.

[Burgess, Mattmann, Totaro, McGibbney

and Ramirez (2014)]

j p l . n a s a . g o v

Indexing Data Flow

• Main bottlenecks

– parsing of documents

– text analysis

– merging of segments

• Detection complexity

– parser failures

– parser error

– Parser inability

Nov 17, 2017 High Performance Computing for Information Retrieval 8

data source

raw data

text + metadata

inverted index

Extraction

Parsing

Indexing

Extracting raw files

from data sources

(e.g., HDF, NetCDF,

GRIB, PDF, etc)

Parsing operations:

- mimetype detection

- language detection

- content handling

- metadata extraction

Indexing operations:

- tokenization

- stop words removal

- stemming

j p l . n a s a . g o v

Overview of the Research Problem

• Fast indexing and searching of Big Data

– inverted index construction is a burdensome
operation

• What is the Hadoop ecosystem?

– MapReduce [Dean and Ghemawat (2010)]

– HDFS [Shafer, Rixner and Cox (2010)]

– Ecosystem projects: Hive, Spark, Ambari, Pig,
etc.

• Why not Hadoop?

– Hadoop performance

– Data Not Distributed

Nov 17, 2017 High Performance Computing for Information Retrieval 9

[Jiang et al. (2010)] [Lin et al. (2012)]

[Dong et al. (2014)]

j p l . n a s a . g o v

Research Statement and Hypotheses

• How to efficiently face the indexing

problem?

– Extract-Parse-Index in-memory pipelines

– Parallel Technologies (e.g., GPU, Pthreads)

– Enhancing de facto IR standard technologies

• ISODAC [Totaro, Bernaschi, Carbone and Cianfriglia (2016)]

1. New high performance solution for indexing

2. Only inverted indexes are written on disk

3. Scalable according to hardware resources

Nov 17, 2017 High Performance Computing for Information Retrieval 10

j p l . n a s a . g o v

Software Architecture

Nov 17, 2017 High Performance Computing for Information Retrieval 11

HPC Cluster

Web GUI

DATABASE

CONNECTIONS’ LEGEND

DB input/ouput

HPC cluster

INDEX

REPO

SEARCHER

SearchAdmin

MEDIATOR

Worker Nodes

DBMS

COORDINATOR

Status

Manager

Job

Scheduler WORKER

AGENT

j p l . n a s a . g o v

EPI In-Memory Pipeline

Nov 17, 2017 High Performance Computing for Information Retrieval 12

Docu - Parser

Image - Extractor

Docu - Parser

Docu - Parser

Docu - Parser

Docu - Indexer

Docu - Indexer

Docu - Indexer

Docu - Indexer

S1: EXTRACT S2: PARSE S3: INDEXING

The Sleuth Kit

j p l . n a s a . g o v

Recovery Procedure

EPI In-Memory Pipeline

• Provides resilience against both missing

files (M) and parsing failures (rounds)

• Each global fileID can be calculated by

using the following formula:

𝑓𝑖𝑙𝑒𝐼𝐷 = ቊ
𝑀 × 𝑁 0 + 𝑂𝑘 0 𝑟𝑜𝑢𝑛𝑑𝑠 = 0

𝑠𝑒𝑛𝑡 𝑧 + 𝑀 − 𝐶𝑘 𝑧 × 𝑁 𝑧 + 1 + 𝑂𝑘 𝑧 + 1 𝑟𝑜𝑢𝑛𝑑𝑠 > 0

𝑧 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖ȁ𝐶𝑘 𝑖 < 𝑀

Nov 17, 2017 High Performance Computing for Information Retrieval 13

Detects local
missing files (M)

Uploads
pipe id (Pk)

and list of M

Uploads pipe
seq. (Ok) and
counters (Ck)

Determines
list of global
missing files

Starts an
additional

job

Docu-Indexer Image-Extractor Coordinator

j p l . n a s a . g o v

Recovery Procedure

EPI In-Memory Pipeline

Nov 17, 2017 High Performance Computing for Information Retrieval 14

• First round
i = 0

N[0] = 6

O[0] = <0,1,2,3,4,5>

C[0] = <x0,x1,x2,x3,x4,x5>

• Second round
i+1 = 1

N[1] = 4

O[1] = <0,null,1,2,null,3>

C[1] = <y0,0,y1,y2,0,y3>

Image-Extractor Docu-Parsers Docu-Indexers

0

1

2

3

4

5

null

null

j p l . n a s a . g o v

Optimizations: Text Analysis on GPU

• CUDA-based Text Analysis

– Text analysis including tokenization, filtering and stop

words removal processes

– Exploits the computational power of GPU cards

– Extends CLucene StandardAnalyzer with CUDA

kernels that perform text analysis

Nov 17, 2017 High Performance Computing for Information Retrieval 15

CLucene Libraries: http://clucene.sourceforge.net/

j p l . n a s a . g o v

Optimizations: Text Analysis on GPU

Nov 17, 2017 High Performance Computing for Information Retrieval 16

One CUDA Thread per character.

Each thread applies LowerCase Filter

-1 -1 2 -1 -1 -1 -1 7 -1 -1 10 -1 -1 -1 14 15

0 3 8 11 2 7 10 14

my

M n a m e i s B

Each CUDA Thread performs Tokenization by locating

delimiter positions

Vector processing in order to create two vectors representing

start and end token indexes respectively.

y o b . \0

m y n a m e i s b o b . \0

Start Indexes

(related to input text)

name

is

bob

End Indexes

(related to input text)

my

name

bob

One CUDA Thread per token.

Each thread applies StopWords Filter.

j p l . n a s a . g o v

Optimizations: Text Analysis on GPU

Nov 17, 2017 High Performance Computing for Information Retrieval 17

j p l . n a s a . g o v

Optimizations: Parallel Segment Merging

• A Lucene index may consist of multiple

sub-indexes or segments

• Merging algorithms are usually based on

priority queues

Nov 17, 2017 High Performance Computing for Information Retrieval 18

car

courage

car

money

sound

car

group

money

courage

group

segment1 segment2 segment3 segment4

car car carmatch merge INDEX

j p l . n a s a . g o v

Optimizations: Parallel Segment Merging

• Perform in parallel multi-thread heapify

and merging of extracted data

– Based on Parallel P.P.Q. [Deo and Prasad (1992)]

– Pthreads-based implementation [IEEE Std 1003.1c-

1995]

Nov 17, 2017 High Performance Computing for Information Retrieval 19

18 28

1

51 52

5

37 39

6

51 52

7

41 47

8

54 57

9

31 32

2

37 42

4

25 29

3

...

E

O

E

O

T
h
r
e
a
d
_
1

T
h
r
e
a
d
_
0

0

1

2

...

r = 2

j p l . n a s a . g o v

Evaluation: ISODAC performance

Nov 17, 2017 High Performance Computing for Information Retrieval 20

0

200

400

600

800

1000

1200

4 GB 8 GB 16 GB 32 GB

In
d

e
x

in
g

 T
im

e
 (

s
e

c
o

n
d

s
)

Datasets

1 Worker node (4 pipes)

2 Worker nodes (8 pipes)

3 Worker nodes (12 pipes)

j p l . n a s a . g o v

ISODAC vs. Spark Indexing

Nov 17, 2017 High Performance Computing for Information Retrieval 21

75
125

239

418

242

577

917

1927

0

200

400

600

800

1000

1200

1400

1600

1800

2000

4 GB 8 GB 16 GB 32 GB

In
d

e
x

in
g

 T
im

e
 (

s
e

c
o

n
d

s
)

Datasets

ISODAC

Spark

j p l . n a s a . g o v

Fault Recovery

• Simulation of two kinds of failure:

– Transient: node restarts after the failure

– Permanent: node becomes permanently

unavailable

Nov 17, 2017 High Performance Computing for Information Retrieval 22

Stress Pattern

(16 GB dataset)

ISODAC Spark

Time (secs) Overhead Time (secs) Overhead

No Failure 239 - 917 -

Transient 387 61% 1131 45%

Permanent 415 73% 2542 177%

j p l . n a s a . g o v

Metadata

• Illustrative Example

• Metadata Building Blocks

• Metadata — A Model Perspective

Nov 17, 2017 High Performance Computing for Information Retrieval 23

j p l . n a s a . g o v

Metadata Interoperability

• Prerequisite for uniform access to media

objects

“Metadata interoperability is a qualitative

property of metadata information objects that

enables systems and applications to work

with or use these objects across system

boundaries.” [Haslhofer and Klas (2010)]

Nov 17, 2017 High Performance Computing for Information Retrieval 24

j p l . n a s a . g o v

Metadata Heterogeneities

Nov 17, 2017 High Performance Computing for Information Retrieval 25

Predominant heterogeneities have been originally identified by:

[Sheth, Larson (1990)] [Ouksel, Sheth (1999)] [Wache (2003)] [Visser et al. (1997)]

j p l . n a s a . g o v

Metadata Mapping

• Interoperability technique that subsumes:

– schema mapping

– instance transformation

“Given a source schema 𝑆𝑠 ∈ 𝒮 and a target

schema 𝑆𝑡 ∈ 𝒮, each consisting of a set of schema

elements, 𝑒𝑠 ∈ 𝑆𝑠 and 𝑒𝑡 ∈ 𝑆𝑡 respectively, a

mapping 𝑀 ∈ ℳ is a directional relationship

between a set of elements 𝑒𝑖
𝑠 ∈ 𝑆𝑠 and a set of

elements 𝑒𝑗
𝑡 ∈ 𝑆𝑡 .” [Haslhofer and Klas (2010)]

Nov 17, 2017 High Performance Computing for Information Retrieval 26

crosswalks

functions

j p l . n a s a . g o v

Mapping Relationship

𝑚 ∈ 𝑀ቐ
𝑚

𝑝 ∈ 𝑃
𝑓 ∈ 𝐹

• Mapping expressions [Spaccapietra et al. (1992)]

– Exclude: 𝐼 𝑒𝑖
𝑠 ∩ 𝐼 𝑒𝑗

𝑡 = ∅

– Equivalent: 𝐼 𝑒𝑖
𝑠 ≡ 𝐼 𝑒𝑗

𝑡

– Include: 𝐼 𝑒𝑖
𝑠 ⊆ 𝐼 𝑒𝑗

𝑡 ∨ 𝐼 𝑒𝑗
𝑡 ⊆ 𝐼 𝑒𝑖

𝑠

– Overlap: 𝐼 𝑒𝑖
𝑠 ∩ 𝐼 𝑒𝑗

𝑡 ≠ ∅ ∧ 𝐼 𝑒𝑖
𝑠 ⊈ 𝐼 𝑒𝑗

𝑡 ∧ 𝐼 𝑒𝑗
𝑡 ⊈ 𝐼 𝑒𝑖

𝑠

Nov 17, 2017 High Performance Computing for Information Retrieval 27

Cardinality (e.g., 1:1, 1:n, n:1)

Mapping expression

Instance transformation function

j p l . n a s a . g o v

Elements of Metadata Mapping

Nov 17, 2017 High Performance Computing for Information Retrieval 28

A Survey of Techniques for Achieving Metadata Interoperability · 29

M

Ss

e
1

s

e
2

s

e
3

s

m
1
(p

a
)

f
X

m
2
(p

b
)

f
y

m
k
(p

c
)

f
z

e
n

s

St

e
1

t

e
2

t

e
3

t

e
m

t

Fig. 7. T he main elements of a metadata mapping specificat ion

Figure 7 illust rates the main elements of a metadata mapping specificat ion. Typ-

ically, the cardinality of a single mapping element is either 1:1, 1:n, or n:1, meaning

that an element from a source schema is related with one or many elements from

the target schema and vice versa. In theory, m:n mappings would also be possi-

ble, but in pract ice they rarely occur because one can model that kind of element

correspondence using mult iple 1:n or n:1 relat ionships.

A mapping expression p defines the semant ics of a mapping element , i.e., it de-

scribes how the interpretat ions of the model elements, denoted as I (es
i) and I (et

i),

are related. In its simplest form, such an expression could be unknown, stat ing that

two elements are related, without giving any evidence how. A more complex exam-

ple are mapping expressions that indicate the confidence of a mapping relat ionship

according to a specified metrics, as described in [Mena et al. 2000]. One can dist in-

guish between the following types of mapping expressions (e.g., [Spaccapiet ra et al.

1992]):

—exclude (I (es
i) \ I (et

j) = ;): the interpretat ions of two schema elements have

dist inct meanings. In the example presented in Sect ion 2, the interpretat ions of

the elements rights in the Dublin Core and birthday in the proprietary schema

exclude each other.

—equivalent (I (es
i) ⌘I (et

j)): the interpretat ions of two, possibly lexically di↵erent

schema elements are equivalent . The elementsauthor in the proprietary and the

element creator in the Dublin Core schema are examples for such a relat ionship.

—include (I (es
i) ✓ I (et

j) _ I (et
j) ✓ I (es

i)): the interpretat ion of one schema element

contains the interpretat ion of another element . In the context of our example, the

interpretat ion of the Dublin Core element creator includes the interpretat ions

of the TV-Anyt ime elements GivenName and FamilyName because these elements

describe a person in the role of an author.

A CM Journal Name, Vol . V , No. N , M 20Y Y .

j p l . n a s a . g o v

Other Group Projects at NASA JPL

Nov 17, 2017 High Performance Computing for Information Retrieval 29

Six months internship at NASA JPL working for Computer

Science for Data Intensive Applications (398M) group

(Mentor: Prof. Chris Mattmann)

Celgene needs a solution

for text mining in

biomedical domain

DARPA Memex for fight

against and prevention of

Human Trafficking

Apache committer and PMC member since April 2015

jp l .nasa.gov

https://github.com/giuseppetotaro

https://www.researchgate.net/profile/Giuseppe_Totaro

https://www.linkedin.com/in/giuseppetotaro

Giuseppe.U.Totaro@jpl.nasa.gov

